新起点
高斯曲率
2020-10-15 15:45:34

微分几何中,曲面上一点的高斯曲率是该点主曲率12的乘积。它是曲率的度量,也即,它的值只依赖于曲面上的距离如何测量,而不是曲面如何嵌入到空间。这个结果是高斯绝妙定理的主要内容。

用符号表示,高斯曲率定义为

也可以如下给出

其中 i = e i {\displaystyle \nabla _{i}=\nabla _{{\mathbf {e} }_{i}}} 是度量张量。

R中的正规曲面的一点p,则高斯曲率为

其中为形算子。

关于高斯曲率的一个很有用的公式是用等温坐标中的拉普拉斯算子表达的刘维尔方程。

利用隐函数定理将曲面用二元函数f的图像来表示,并且假设点p为临界点,也即f在该点的梯度为0(这总是可以通过适当的刚体运动来实现)。然后p点的高斯曲率就是f在点p的黑塞矩阵(二阶导数组成的2x2矩阵)的行列式。这个定义只要用基本的微积分知识就可以理解杯底或者帽顶“对应”鞍点的区别。

曲面上某个区域的高斯曲率的曲面积分称为总曲率。测地三角形(即黎曼球面几何中的三角形)的总曲率等于它的内角和与 π {\displaystyle \pi } 上的高斯曲率的定义明显依赖于曲面各点在空间中的定位,而高斯曲率本身只要曲面上的内在度量就可以决定,而与环境空间没有进一步的关联:它是一个内蕴不变量。精确地讲,高斯曲率在曲面的等度变换下保持不变。

在现代微分几何中,"曲面"抽象的看来是一个二维微分流形。将这个观点和曲面的经典理论联系起来的是将抽象曲面嵌入到R3中,并用第一基本形式赋予黎曼度量。假设这个嵌入在R3中的像是曲面。就是R3中的开区域之间的微分同胚: → ,限制到 ∩ 就是到自己的像的等度变换。绝妙定理可以如下表述:

例如圆柱面的高斯曲率为0,和"展开"后得到的平面是一样的。另一方面,因为半径为的球面有正常数曲率−2而平面有常数曲率0,这两个曲面不是等度的,即使局部也不行。因此即使是一部分球面的平面表示也会扭曲距离。所以没有测绘映射是完美的。

高斯-博内定理将曲面的总曲率和它的欧拉示性数联系起来,并且给出了一个局部几何性质和全局拓扑性质的重要关联。

网站公告: