新起点
余切丛
2020-10-15 16:15:43

微分几何中,流形的余切丛是流形每点的余切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为正则坐标。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密顿函数;这样余切丛可以理解为哈密顿力学讨论的相空间。

余切丛的光滑截面是微分1-形式。

设×是与自己的笛卡尔积。对角映射Δ将中的点映到×中的点 (,)。像 Δ称为对角线。设 I {\displaystyle {\mathcal {I}}} 上光滑函数芽的层。那么商层 I / I 2 {\displaystyle {\mathcal {I}}/{\mathcal {I}}^{2}}

由泰勒定理,这是一个上关于光滑函数芽层上的模的局部自由层。从而在上定义了一个向量丛:余切丛。

余切丛上有一个标准的辛形式,它是一个重言1-形式的外微分。该1-形式赋予余切丛的切丛中的一个向量该余切丛中的元素(一个线性泛函)到应用该向量在切丛上的投影(从余切丛到原来的流形的投影的微分)上得到的值。要证明该形式确实是辛形式,可以利用辛形式是一种局部性质:因为余切丛局部平凡,该定义只需在 R n × R n {\displaystyle \mathbb {R} ^{n}\times \mathbb {R} ^{n}} 和的组合的结合。例如,这是表述单摆的相空间的一个方法。单摆的状态由其位置(一个角度)及其动量(或者等效的有,其速度,因为其质量不变)来表示。这个状态空间象一个圆柱面。该圆柱面是该圆圈的余切丛。上面构造的辛结构,和适当的能量函数一起就给出了一个确定的物理系统。更多细节参看哈密顿力学,参看测地流条目中的一个哈密顿运动方程的显式构造。

网站公告: