新起点
阿基米德公理
2020-03-28 06:27:16
在抽象代数和分析学中,以古希腊数学家阿基米德命名的阿基米德公理(又称阿基米德性质),是一些赋范的群、域和代数结构具有的一个性质。粗略地讲,它是指没有无穷大或无穷小的元素的性质。由于它出现在阿基米德的《论球体和圆柱体》的公理五,1883年,奥地利数学家Otto Stolz(英语:Otto Stolz)赋予它这个名字。这个概念源于古希腊对量的理论;如大卫·希尔伯特的几何公理,有序群、有序域和局部域的理论在现代数学中仍然起着重要的作用。阿基米德公理可表述为如下的现代记法: 对于任何实数 x {displaystyle x} ,存在自然数 n {displaystyle n} 有 n > x {displaystyle n>x} 。在现代实分析中,这不是一个公理。它退却为实数具完备性的结果。基于这理由,常以阿基米德性质的叫法取而代之。简单地说,阿基米德性质可以认为以下二句叙述的任一句:这等价于说,对于任何正实数 a {displaystyle a} 、 b {displaystyle b} ,如果 a < b {displaystyle a<b} ,则存在自然数 n {displaystyle n} ,有实数的完备性蕴含了阿基米德性质,证明利用了反证法:假设对所有 n {displaystyle n} , n a < b {displaystyle na<b} (注意 n a {displaystyle na} 表示 n {displaystyle n} 个 a {displaystyle a} 相加),令 S = { n a | n = 1 , 2 , 3 , . . . } {displaystyle S={na|n=1,2,3,...}} ,则 b {displaystyle b} 为 S {displaystyle S} 的上界( S {displaystyle S} 上方有界,依实数完备性,必存在最小上界,令其为 α {displaystyle alpha } ),于是 ∀ n = 1 , 2 , 3 , . . . {displaystyle forall n=1,2,3,...} 有得出 α − a {displaystyle alpha -a} 也是 S {displaystyle S} 的一个上界,这与 α {displaystyle alpha } 是最小上界矛盾。这样就由实数的完备性推出了阿基米德性质,但阿基米德性推不出实数的完备性,因为有理数满足阿基米德性,但并不是完备的。

相关:

网站公告: