新起点
希尔伯特第十六问题
2020-10-12 10:30:43

希尔伯特第十六问题,是希尔伯特的23个问题之一。它分成两个部分:

Harnack在1876年证明了一个平面上 n {\displaystyle n} 次实代数曲线最多有 n 2 3 n + 4 2 {\displaystyle {\frac {n^{2}-3n+4}{2}}} 个分支。希尔伯特提议研究这些分支之间的拓扑性质,并将Harnack的估计推广到空间里的实代数曲面。

给定二元 n {\displaystyle n} 次实多项式 P ( x , y ) , Q ( x , y ) {\displaystyle P(x,y),Q(x,y)} ,考虑下述平面上的动力系统

{ d x d t = P ( x , y ) d y d t = Q ( x , y ) {\displaystyle \left\{{\begin{array}{ll}{\dfrac {\mathrm {d} x}{\mathrm {d} t}}&=P(x,y)\\{\dfrac {\mathrm {d} y}{\mathrm {d} t}}&=Q(x,y)\end{array}}\right.}

希尔伯特提议研究其极限环的最大数目及其拓扑。

总而言之,此问题意在研究由实多项式定义出的拓扑结构。在第一部分,我们考虑实多项式的零点;在第二部分,我们考虑实多项式定义的向量场及其积分曲线。

希尔伯特第十六问题在1950年代末由苏联科学院院士彼得洛夫斯基(I.G.Petrovsky)与兰迪斯(E.M.Landies)解决。但随后他们的证明被证明存在漏洞。1980年,中国科学技术大学研究生史松龄,南京大学陈兰荪、王明淑分别独立举出反例,彻底推翻了二人的证明 。因此第十六问题至今仍未解决。

网站公告: