新起点
玻尔兹曼方程
2020-10-15 13:38:54

玻尔兹曼方程或玻尔兹曼输运方程(Boltzmann transport equation,BTE)是由玻尔兹曼于1872年提出的一个方程,用于描述非平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热量从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程“这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量(如能量,电荷或粒子数)的变化的动力学方程。

波尔兹曼方程并不去确定流体中每个粒子的位置和动量,而是求出具有特定位置和动量的粒子的概率分布。具体而言,考虑某一瞬间,以位置矢量 r {\displaystyle \mathbf {r} } , ê, ê 为笛卡尔坐标系下的单位矢量。

对(3)两边同除以 并代入(2)可得:

这里, F ( r , t ) {\displaystyle F(\mathbf {r} ,t)} 为流体中作用在粒子上的力场, m {\displaystyle m} 为粒子质量。 右边的一项用于描述粒子间相互碰撞产生的影响;如果此项为零,则说明粒子之间没有碰撞。无碰撞情况下的玻尔兹曼方程常被称为弗拉索夫方程(英语:Vlasov equation)。

这个方程比上一节“主要论述”中的一般形式更加有用。然而这个方程依旧是不完整的:除非已知 f {\displaystyle f} 中的碰撞项,否则 f {\displaystyle f} 是解不出来的。这一项并不像其他项一样可以简单地或一般地得到——这一项是表示粒子的碰撞的统计项,需要知道粒子遵守怎样的统计规律,例如麦克斯韦-玻尔兹曼分布,费米-狄拉克分布或玻色–爱因斯坦分布。

玻尔兹曼的一个关键见解就是对碰撞项的确定。他假设的碰撞项完全是由假定在碰撞前不相关的两个粒子的相互碰撞得到的。这个假设被波尔兹曼称为“Stosszahlansatz”,也叫做“分子混沌假设(英语:Molecular chaos)”。根据这一假设,碰撞项可以被写作单粒子分布函数的乘积在动量空间上的积分:

其中 p A {\displaystyle \mathbf {p} _{A}} p B {\displaystyle \mathbf {p} _{B}} 表示碰撞前任意两个粒子的动量(为了方便而标记为 A {\displaystyle A} B {\displaystyle B} ), p A {\displaystyle \mathbf {p} '_{A}} p B {\displaystyle \mathbf {p} '_{B}} 表示碰撞后的动量

指对应动量的大小(此概念参考相对速度), I ( g , Ω ) {\displaystyle I(g,\Omega )} 是碰撞的微分散射截面。

求解波尔兹曼方程时,许多挑战都来自于其复杂的碰撞项;因此我们会做一些对碰撞项“建模”和简化的尝试。现知最好的模型是由Bhatnagar,Gross和Krook作出的(BGK近似)。BGK近似中假设分子的碰撞会迫使一个物理空间中的某一点的非平衡分布函数回到麦克斯韦平衡分布函数,且其发生率正比于分子碰撞频率。于是,波尔兹曼方程可被写作以下的BGK形式:(也叫做“驰豫时间近似”,relaxation time approximation)

其中 ν {\displaystyle \nu } 是分子碰撞频率,和驰豫时间 τ {\displaystyle \tau } 具有倒数关系: ν = 1 / τ {\displaystyle \nu =1/\tau } f 0 {\displaystyle f_{0}} 是此处局域的麦克斯韦分布函数,由空间中这一点的气体温度给定。

对于具有多种化学组分的混合物,我们以 i =1,2,3,……,n 标记各种成分。则对于组分i的方程是:

其中 f i = f i ( r , p i , t ) {\displaystyle f_{i}=f_{i}(\mathbf {r} ,\mathbf {p_{i}} ,t)} 。碰撞项为

其中 f = f ( p i , t ) {\displaystyle f'=f'(\mathbf {p_{i}'} ,t)} ,相对动量的大小是

Iij 是粒子i和粒子j之间的微分散射截面。此积分的和描述的是某一相空间元中,组分i粒子的进出。

玻尔兹曼方程可用于推导流体动力学中的质量守恒,电量守恒,动量守恒,以及能量守恒定律:p 163。对于只含有一种粒子的流体,粒子数密度 n {\displaystyle n} 为:

算符 A 的期望值由下式给出:

由于守恒方程中包含张量,以下使用爱因斯坦求和约定简化标记,即 x x i {\displaystyle \mathbf {x} \rightarrow x_{i}} p p i = m w i {\displaystyle \mathbf {p} \rightarrow p_{i}=mw_{i}} ,其中 w i {\displaystyle w_{i}} 为粒子速度矢量。定义某函数 g ( p i ) {\displaystyle g(p_{i})} ,使得其唯一的自变量为动量 p i {\displaystyle p_{i}} (碰撞中动量守恒)。假设力 F i {\displaystyle F_{i}} 为位置的函数,且对于 p i ± {\displaystyle p_{i}\rightarrow \pm \infty } f {\displaystyle f} 为0。对玻尔兹曼方程两边同乘 g {\displaystyle g} ,并对动量积分可得如下四项:

因为 g {\displaystyle g} 在碰撞中守恒,所以最后一项为零。


g = m {\displaystyle g=m} ,即粒子质量,积分后的玻尔兹曼方程化为质量守恒方程:pp 12,168:

ρ = m n {\displaystyle \rho =mn} 为质量密度, V i = w i {\displaystyle V_{i}=\langle w_{i}\rangle } 为平均流体速度。

g = m w i {\displaystyle g=mw_{i}} ,即粒子动量,积分后的玻尔兹曼方程化为动量守恒方程:pp 15,169:

P i j = ρ ( w i V i ) ( w j V j ) {\displaystyle P_{ij}=\rho \langle (w_{i}-V_{i})(w_{j}-V_{j})\rangle } 为压强张量(粘性应力张量(英语:viscous stress tensor)加上流体静力学压强)。

g = 1 2 m w i w i {\displaystyle g={\tfrac {1}{2}}mw_{i}w_{i}} ,即粒子动能,积分后的玻尔兹曼方程化为能量守恒方程:pp 19,169:

u = 1 2 ρ ( w i V i ) ( w i V i ) {\displaystyle u={\tfrac {1}{2}}\rho \langle (w_{i}-V_{i})(w_{i}-V_{i})\rangle } 为动力热能密度(kinetic thermal energy density), J q i = 1 2 ρ ( w i V i ) ( w k V k ) ( w k V k ) {\displaystyle J_{qi}={\tfrac {1}{2}}\rho \langle (w_{i}-V_{i})(w_{k}-V_{k})(w_{k}-V_{k})\rangle } 热通量矢量。

在哈密顿力学中, 玻尔兹曼方程通常写作

其中 L 是刘维尔算子(这里定义的刘维尔算子和链接文章中的定义不一致),它描述了相空间体积的演化;C 是碰撞算子。非相对论下的L 写作

直到2010年,波尔兹曼方程的准确解才在数学上被证明是良好(英语:Pathological_(mathematics)#Well-behaved)(well-behaved)的。这意味着,如果对服从波尔兹曼方程的系统施加一个微扰,此系统最终将回到平衡状态,而不是发散到无穷,或表现出其他的行为。然而,这种存在性证明是无助于我们在现实问题中求解该等式的。 事实上,这个结论只告诉我们某种特定条件下的解是否存在,而不是如何找到他们。在实践中,数值计算方法被用于寻找各种形式的波尔兹曼方程的近似解,应用范围从稀薄气流中的高超音速空气动力学,到等离子体的流动中都可以见到。

网站公告: