新起点
陈类
2020-10-15 15:54:20

数学上,特别是在代数拓扑和微分几何中,陈类(英语:Chern class,或称陈氏类)是一类复向量丛的示性类,类比于斯蒂弗尔-惠特尼类(英语:Stiefel-Whitney class)作为实向量丛的示性类(英语:Characteristic class)。

陈类因陈省身而得名,他在1940年代第一个给出了它们的一般定义。

给定一个拓扑空间上的一个复向量丛,的陈类是一系列的上同调的元素。的第k个陈类通常记为(),是的整数系数的上同调群(;)中的一个元素,并且满足如下公理:

公理1. 对于任何 E ,   c 0 ( E ) = 1 H 0 ( X ; Z ) {\displaystyle E,\ c_{0}(E)=1\in H^{0}(X;\mathbb {Z} )} 和一个分类空间(在这个情况下是格拉斯曼流形联系起来的映射);还有亚历山大·格罗滕迪克的一种办法,表明公理上只需定义线丛的情况就够了。陈类也自然的出现在代数几何中。

直观地说,陈类和向量丛的截面"所需要的0"的个数相关。

陈类的理论导致了殆复流形的配边不变量的研究。

若是一个复流形,则其切丛是一个复向量丛。的定义为其切丛的陈类。若是紧的2维的,则每个陈类中的2次单项式可以和的基本类配对,得到一个整数,称为的。

若′是另一个同维度的近复流形,则它和配边,当且仅当′和陈数相同.

陈类理论有个一般化,其中普通的上同调由一个广义上同调群理论所代替。使得这种一般化成为可能的称为复可定向的理论。陈类的形式化属性依然相同,但有一个关键的不同:计算线丛的张量积的第一陈类的规则不是各个因子的(普通)加法而是一个形式化群法则(formal group law)。

物理学

网站公告: