新起点
爱因斯坦求和约定
2020-10-12 14:53:44

在数学里,特别是将线性代数套用到物理时,爱因斯坦求和约定(Einstein summation convention)是一种标记的约定,又称为爱因斯坦标记法(Einstein notation),在处理关于坐标的方程式时非常有用。这约定是由阿尔伯特·爱因斯坦于1916年提出的。后来,爱因斯坦与友人半开玩笑地说:“这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。”

按照爱因斯坦求和约定,当一个单独项目内有标号变数出现两次,一次是上标,一次是下标时,则必须总和所有这单独项目的可能值。通常而言,标号的标值为1、2、3(代表维度为三的欧几里得空间),或0、1、2、3(代表维度为四的时空或闵可夫斯基时空)。但是,标值可以有任意值域,甚至(在某些应用案例里)无限集合。这样,在三维空间里,

的意思是

请特别注意,上标并不是指数,而是标记不同坐标。例如,在直角坐标系里, x 1 {\displaystyle x^{1}\,\!} x 2 {\displaystyle x^{2}\,\!} x 3 {\displaystyle x^{3}\,\!} 分别表示 x {\displaystyle x\,\!} 坐标、 y {\displaystyle y\,\!} 坐标、 z {\displaystyle z\,\!} 坐标,而不是 x {\displaystyle x\,\!} x {\displaystyle x\,\!} 的平方、 x {\displaystyle x\,\!} 的立方。

爱因斯坦标记法的基本点子是余向量与向量可以形成标量:

通常会将这写为求和公式形式:

在基底变换之下,标量保持不变。当基底改变时,一个向量的线性变换可以用矩阵来描述,而余向量的线性变换则需用其逆矩阵来描述。这样的设计为的是要保证,不论基底为何,伴随余向量的线性函数(即上述总和)保持不变。由于只有总和不变,而总和所涉及的每一个项目都有可能会改变,所以,爱因斯坦提出了这标记法,重复标号表示总和,不需要用到求和符号:

采用爱因斯坦标记法,余向量都是以下标来标记,而向量都是以上标来标记。标号的位置具有特别意义。请不要将上标与指数混淆在一起,大多数涉及的方程式都是线性,不超过变数的一次方。在方程式里,单独项目内的标号变数最多只会出现两次,假若多于两次,或出现任何其它例外,则都必须特别加以说明,才不会造成含意混淆不清。

在线性代数里,采用爱因斯坦标记法,可以很容易的分辨向量和余向量(又称为1-形式)。向量的分量是用上标来标明,例如, a i {\displaystyle a^{i}\,\!} 。给予一个 n {\displaystyle n\,\!} 维向量空间 V {\displaystyle \mathbb {V} \,\!} 和其任意基底 e = ( e 1 , e 2 , , e n ) {\displaystyle \mathbf {e} =(\mathbf {e} _{1},\mathbf {e} _{2},\dots ,\mathbf {e} _{n})\,\!} (可能不是标准正交基),那么,向量 a {\displaystyle \mathbf {a} \,\!} 表示为

余向量的分量是用下标来标明,例如, α i {\displaystyle \alpha _{i}\,\!} 。给予 V {\displaystyle \mathbb {V} \,\!} 的对偶空间 V {\displaystyle \mathbb {V} ^{*}\,\!} 和其任意基底 ω = ( ω 1 , ω 2 , , ω n ) {\displaystyle {\boldsymbol {\omega }}=({\boldsymbol {\omega }}^{1},{\boldsymbol {\omega }}^{2},\dots ,{\boldsymbol {\omega }}^{n})\,\!} (可能不是标准正交基),那么,余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 表示为

采用向量的共变和反变术语,上标表示反变向量(向量)。对于基底的改变,从 e {\displaystyle \mathbf {e} \,\!} 改变为 e ¯ {\displaystyle {\overline {\mathbf {e} }}\,\!} ,反变向量会变换为

其中, a ¯ i {\displaystyle {\overline {a}}^{i}\,\!} 是改变基底后的向量的分量, x ¯ i {\displaystyle {\overline {x}}^{i}\,\!} 是改变基底后的坐标, x j {\displaystyle x^{j}\,\!} 是原先的坐标,

下标表示共变向量(余向量)。对于基底的改变,从 ω {\displaystyle {\boldsymbol {\omega }}\,\!} 改变为 ω ¯ {\displaystyle {\overline {\boldsymbol {\omega }}}\,\!} ,共变向量会会变换为

矩阵 A {\displaystyle A\,\!} 的第 m {\displaystyle m\,\!} 横排,第 n {\displaystyle n\,\!} 竖排的元素,以前标记为 A m n {\displaystyle A_{mn}\,\!} ;现在改标记为 A n m {\displaystyle A_{n}^{m}\,\!} 。各种一般运算都可以用爱因斯坦标记法来表示如下:

给予向量 a {\displaystyle \mathbf {a} \,\!} 和余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} ,其向量和余向量的内积为标量:

给予矩阵 A {\displaystyle A\,\!} 和向量 a {\displaystyle \mathbf {a} \,\!} ,它们的乘积是向量 b {\displaystyle \mathbf {b} \,\!}

类似地,矩阵 A {\displaystyle A\,\!} 的转置矩阵 B = A T {\displaystyle B=A^{\mathrm {T} }\,\!} ,其与余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 的乘积是余向量 β {\displaystyle {\boldsymbol {\beta }}\,\!}

矩阵乘法表示为

这公式等价于较冗长的普通标记法:

给予一个方块矩阵 A j i {\displaystyle A_{j}^{i}\,\!} ,总和所有上标与下标相同的元素 A i i {\displaystyle A_{i}^{i}\,\!} ,可以得到这矩阵的迹 t {\displaystyle t\,\!}

M维向量 a {\displaystyle \mathbf {a} \,\!} 和N维余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 的外积是一个M×N矩阵 A {\displaystyle A\,\!}

采用爱因斯坦标记式,上述方程式可以表示为

由于 i {\displaystyle i\,\!} j {\displaystyle j\,\!} 代表两个不同的标号,在这案例,值域分别为M和N,外积不会除去这两个标号,而使这两个标号变成了新矩阵 A {\displaystyle A\,\!} 的标号。

一般力学及工程学会用互相标准正交基的基底向量 i ^ {\displaystyle {\hat {\mathbf {i} }}\,\!} j ^ {\displaystyle {\hat {\mathbf {j} }}\,\!} k ^ {\displaystyle {\hat {\mathbf {k} }}\,\!} 来描述三维空间的向量。

把直角坐标系的基底向量 i ^ {\displaystyle {\hat {\mathbf {i} }}\,\!} j ^ {\displaystyle {\hat {\mathbf {j} }}\,\!} k ^ {\displaystyle {\hat {\mathbf {k} }}\,\!} 写成 e ^ 1 {\displaystyle {\hat {\mathbf {e} }}_{1}\,\!} e ^ 2 {\displaystyle {\hat {\mathbf {e} }}_{2}\,\!} e ^ 3 {\displaystyle {\hat {\mathbf {e} }}_{3}\,\!} ,所以一个向量可以写成:

根据爱因斯坦求和约定,若单项中有标号出现两次且分别位于上标及下标,则此项代表着所有可能值之总和:

由于基底是标准正交基, u {\displaystyle \mathbf {u} \,\!} 的每一个分量 u i = u i {\displaystyle u^{i}=u_{i}\,\!} ,所以,

两个向量 u {\displaystyle \mathbf {u} \,\!} v {\displaystyle \mathbf {v} \,\!} 的内积是

由于基底是标准正交基,基底向量相互正交归一:

其中,   δ i j {\displaystyle \ \delta _{ij}\,\!} 就是克罗内克函数。当 i = j {\displaystyle i=j\,\!} 时,则 δ i j = 1 {\displaystyle \delta _{ij}=1\,\!} ,否则 δ i j = 0 {\displaystyle \delta _{ij}=0\,\!}

逻辑上,在方程式内的任意项目,若遇到了克罗内克函数   δ i j {\displaystyle \ \delta _{ij}\,\!} ,就可以把方程式中的标号 i {\displaystyle i\,\!} 转为 j {\displaystyle j\,\!} 或者把标号 j {\displaystyle j\,\!} 转为 i {\displaystyle i\,\!} 。所以,

采用同样的标准正交基 e ^ 1 {\displaystyle {\hat {\mathbf {e} }}_{1}\,\!} e ^ 2 {\displaystyle {\hat {\mathbf {e} }}_{2}\,\!} e ^ 3 {\displaystyle {\hat {\mathbf {e} }}_{3}\,\!} ,两个向量 u {\displaystyle \mathbf {u} \,\!} v {\displaystyle \mathbf {v} \,\!} 的叉积,以方程式表示为

注意到

其中,张量   ϵ i j k {\displaystyle \ \epsilon _{ijk}\,\!} 是列维-奇维塔符号,定义为

所以,

设定 w = u × v {\displaystyle \mathbf {w} =\mathbf {u} \times \mathbf {v} \,\!} ,那么,

所以,

在欧几里得空间 V {\displaystyle \mathbb {V} \,\!} 里,共变向量和反变向量之间的区分很小。这是因为能够使用内积运算从向量求得余向量;对于所有向量 b {\displaystyle \mathbf {b} \,\!} ,通过下述方程式,向量 a {\displaystyle \mathbf {a} \,\!} 唯一地确定了余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!}

逆过来,通过上述方程式,每一个余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 唯一地确定了向量 a {\displaystyle \mathbf {a} \,\!} 。由于这向量与余向量的相互辨认,我们可以提到向量的共变分量和反变分量;也就是说,它们只是同样向量对于基底和其对偶基底的不同表现。

给予 V {\displaystyle \mathbb {V} \,\!} 的一个基底 f = ( X 1 , X 2 , , X n ) {\displaystyle {\mathfrak {f}}=(X_{1},X_{2},\dots ,X_{n})\,\!} ,则必存在一个唯一的对偶基底 f = ( Y 1 , Y 2 , , Y n ) {\displaystyle {\mathfrak {f}}^{\sharp }=(Y^{1},Y^{2},\dots ,Y^{n})\,\!} ,满足

其中,张量 δ j i {\displaystyle \delta _{j}^{i}\,\!} 是克罗内克函数。

以这两种基底,任意向量 a {\displaystyle \mathbf {a} \,\!} 可以写为两种形式

其中, a i {\displaystyle a^{i}\,\!} 是向量 a {\displaystyle \mathbf {a} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的反变分量, a i {\displaystyle a_{i}\,\!} 是向量 v {\displaystyle \mathbf {v} \,\!} 对于基底 f {\displaystyle {\mathfrak {f}}\,\!} 的共变分量,

在欧几里得空间 R 3 {\displaystyle \mathbb {R} ^{3}\,\!} 里,使用内积运算,能够从向量求得余向量。给予一个可能不是标准正交基的基底,其基底向量为 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} ,就可以计算其对偶基底的基底向量:

其中, τ = e 1 ( e 2 × e 3 ) {\displaystyle \tau =\mathbf {e} _{1}\cdot (\mathbf {e} _{2}\times \mathbf {e} _{3})\,\!} 是基底向量 e 1 {\displaystyle \mathbf {e} _{1}\,\!} e 2 {\displaystyle \mathbf {e} _{2}\,\!} e 3 {\displaystyle \mathbf {e} _{3}\,\!} 共同形成的平行六面体的体积。

反过来计算,

其中, τ = e 1 ( e 2 × e 3 ) = 1 / τ {\displaystyle \tau '=\mathbf {e} ^{1}\cdot (\mathbf {e} ^{2}\times \mathbf {e} ^{3})=1/\tau \,\!} 是基底向量 e 1 {\displaystyle \mathbf {e} ^{1}\,\!} e 2 {\displaystyle \mathbf {e} ^{2}\,\!} e 3 {\displaystyle \mathbf {e} ^{3}\,\!} 共同形成的平行六面体的体积。

虽然 e i {\displaystyle \mathbf {e} _{i}\,\!} e j {\displaystyle \mathbf {e} ^{j}\,\!} 并不相互标准正交,它们相互对偶:

虽然 e i {\displaystyle \mathbf {e} ^{i}\,\!} e j {\displaystyle \mathbf {e} _{j}\,\!} 并不相互标准正交,它们相互对偶:

这样,任意向量 a {\displaystyle \mathbf {a} \,\!} 的反变分量为

类似地,共变分量为

这样, a {\displaystyle \mathbf {a} \,\!} 可以表示为

或者,

综合上述关系式,

向量 a {\displaystyle \mathbf {a} \,\!} 的共变分量为

其中, g j i = e j e i {\displaystyle g_{ji}=\mathbf {e} _{j}\cdot \mathbf {e} _{i}\,\!} 是度规张量。

向量 a {\displaystyle \mathbf {a} \,\!} 的反变分量为

其中, g j i = e j e i {\displaystyle g^{ji}=\mathbf {e} ^{j}\cdot \mathbf {e} ^{i}\,\!} 是共轭度规张量。

共变分量的标号是下标,反变分量的标号是上标。假若共变基底向量组成的基底是标准正交基,或反变基底向量组成的基底是标准正交基,则共变基底与反变基底相互等价。那么,就没有必要分辨共变分量和反变分量,所有的标号都可以用下标来标记。

思考维度为 n {\displaystyle n\,\!} 的向量空间 V {\displaystyle \mathbb {V} \,\!} 。给予一个可能不是标准正交基的基底 ( e 1 , e 2 , , e n ) {\displaystyle (\mathbf {e} _{1},\mathbf {e} _{2},\dots ,\mathbf {e} _{n})\,\!} 。那么,在 V {\displaystyle \mathbb {V} \,\!} 内的向量 v {\displaystyle \mathbf {v} \,\!} ,对于这基底,其分量为 v 1 {\displaystyle v^{1}\,\!} v 2 {\displaystyle v^{2}\,\!} 、... v n {\displaystyle v^{n}\,\!} 。以方程式表示,

在这方程式右手边,标号 i {\displaystyle i\,\!} 在同一项目出现了两次,一次是上标,一次是下标,因此,从 i {\displaystyle i\,\!} 等于 1 {\displaystyle 1\,\!} n {\displaystyle n\,\!} ,这项目的每一个可能值都必须总和在一起。

爱因斯坦约定的优点是,它可以应用于从 V {\displaystyle \mathbb {V} \,\!} 用张量积和对偶性建立的向量空间。例如, V V {\displaystyle \mathbb {V} \otimes \mathbb {V} \,\!} V {\displaystyle \mathbb {V} \,\!} 与自己的张量积,拥有由形式为 e i j = e i e j {\displaystyle \mathbf {e} _{ij}=\mathbf {e} _{i}\otimes \mathbf {e} _{j}\,\!} 的张量组成的基底。任意在 V V {\displaystyle \mathbb {V} \otimes \mathbb {V} \,\!} 内的张量 T {\displaystyle \mathbf {T} \,\!} 可以写为

向量空间 V {\displaystyle \mathbb {V} \,\!} 的对偶空间 V {\displaystyle \mathbb {V} ^{*}\,\!} 拥有基底 ( e 1 , e 2 , , e n ) {\displaystyle (\mathbf {e} ^{1},\mathbf {e} ^{2},\dots ,\mathbf {e} ^{n})\,\!} ,遵守规则

其中, δ j i {\displaystyle \delta _{j}^{i}\,\!} 是克罗内克函数。

为了更明确地解释爱因斯坦求和约定,在这里给出几个简单的例子。

网站公告: