新起点
施瓦茨-米尔诺引理
2021-01-23 06:43:23

施瓦茨-米尔诺(Schwarz–Milnor或Švarc–Milnor)引理,是数学上的一个结果,给出了群和在度量空间上的群作用的关系。阿尔伯特·施瓦茨首先发现这个结果,十数年后约翰·米尔诺重新发现。这条引理有时称为几何群论基本定理。有了这条引理,就可以由度量空间的几何性质,来研究群的性质。

设为一个度量空间。如果每两点都有测地线相连,就称为测地的。

如果中每一个闭球都是紧致集,就称为常态的。考虑中从某点 x {\displaystyle x'} 为常态的原因。

一个群在上的群作用称为真不连续的,如果对每个紧致集 K X {\displaystyle K\subset X} 中只有有限个元素,使得 g K K {\displaystyle g\cdot K\cap K\neq \varnothing } 为一个常态测地度量空间。如果一个群以等距映射真不连续地、余紧地作用在上,那么是有限生成群。而且中用一个有限生成集合赋予以字度量后,和拟等距同构;对于的任何一点 x 0 {\displaystyle x_{0}} 到的拟等距映射。

中任何有限生成集合所对应的字度量,都是拟等距同构。故此只需找到一个有限生成集合,证明在上取对应的字度量后,和是拟等距同构即可。

选定 x 0 X {\displaystyle x_{0}\in X} 的作用下覆盖。

取的一个子集

的元素若在子集内,则有

是常态度量空间,故 B ( x 0 , r + 1 / 2 ) ¯ {\displaystyle {\overline {B(x_{0},r+1/2)}}} 仅有有限个。因此是有限集。

对中任何非平凡元素,有一条测地线段连接两点 x 0 {\displaystyle x_{0}} 为整数,符合

在这条测地线段上取点 x j {\displaystyle x_{j}} =1,..., +1,满足 d X ( x j 1 , x j ) 1 {\displaystyle d_{X}(x_{j-1},x_{j})\leq 1} 中的元素 g j {\displaystyle g_{j}} 是由最多+1个的元素的积。因此是的生成集合,而且对所有都有

c = max s S d X ( x 0 , s x 0 ) {\displaystyle c=\max _{s\in S}d_{X}(x_{0},s\cdot x_{0})} 中每一点都距离某个 g x 0 {\displaystyle g\cdot x_{0}} ,所以 g g x 0 {\displaystyle g\mapsto g\cdot x_{0}} 和是拟等距同构。

相关:

网站公告: