新起点
三角不等式
2021-01-23 06:39:17

三角不等式是数学上的一个不等式,表示从A到B再到C的距离永不少于从A到C的距离;亦可以说是两项独立物件的量之和不少于其和的量。它除了适用于三角形之外,还适用于其他数学范畴及日常生活中。

在三角形ABC中,这个式子用标量可以写作 A B ¯ + B C ¯ A C ¯ {\displaystyle {\overline {AB}}+{\overline {BC}}\geq {\overline {AC}}}

当该式取不等号时,可以由欧几里得第五公设导出;欧几里得给出的证明记载于《几何原本》第一卷命题20:(证明所用的辅助图像见右)

现在,我们有三角形ABC。延长 A B ¯ {\displaystyle {\overline {AB}}} 至点D,并使 B D ¯ = B C ¯ {\displaystyle {\overline {BD}}={\overline {BC}}} ,联结 D C ¯ {\displaystyle {\overline {DC}}}

那么,三角形BCD为等腰三角形,所以 B D C = B C D {\displaystyle \angle BDC=\angle BCD} 。记它们均为 α {\displaystyle \alpha }

根据欧几里得第五公设,角 β {\displaystyle \beta } 也就是 A C D {\displaystyle \angle ACD} 大于角 α {\displaystyle \alpha } B C D {\displaystyle \angle BCD} ,也就是 B D C {\displaystyle \angle BDC} );

由于角 β {\displaystyle \beta } 对应边 A D ¯ {\displaystyle {\overline {AD}}} ,角 α {\displaystyle \alpha } 对应边 A C ¯ {\displaystyle {\overline {AC}}} ,因此 A D ¯ > A C ¯ {\displaystyle {\overline {AD}}>{\overline {AC}}} (大角对大边,命题19)。

又由于 D B ¯ = B C ¯ {\displaystyle {\overline {DB}}={\overline {BC}}} ,所以 A D ¯ = A B ¯ + B D ¯ = A B ¯ + B C ¯ > A C ¯ {\displaystyle {\overline {AD}}={\overline {AB}}+{\overline {BD}}={\overline {AB}}+{\overline {BC}}>{\overline {AC}}} ,即证。

如果我们将该式左右各减去 B C ¯ {\displaystyle {\overline {BC}}} ,便能得到 A B ¯ > A C ¯ B C ¯ {\displaystyle {\overline {AB}}>{\overline {AC}}-{\overline {BC}}} ,这便是三角不等式的另一种表达方法:三角形的两边之差小于第三边。

当该式取等号的时候,其已经不属于欧氏几何的范畴,这种情况只有可能在球面三角形中出现,此时 | a b | c a + b {\displaystyle \left|a-b\right|\leq c\leq a+b} ,而a, b, c为三角形三边的长。

用向量的写法,这个不等式可以写成:

上式和标量的写法明显是等价的。

考虑到 A B + B C = A C {\displaystyle {\overrightarrow {AB}}+{\overrightarrow {BC}}={\overrightarrow {AC}}} ,该式也可以写成: | A B + B C | | A B | + | B C | {\displaystyle \left|{\overrightarrow {AB}}+{\overrightarrow {BC}}\right|\leq \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|} ,这种情况的形式和下方实数中的形式是一致的。

如果根据向量构建平面直角坐标系,则可以用代数的方式予以证明。

还是以右图中的三角形为例子。假设在坐标系中,向量 A B {\displaystyle {\overrightarrow {AB}}} 的方向向量为 ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} ,向量 B C {\displaystyle {\overrightarrow {BC}}} 的方向向量为 ( x 2 , y 2 ) {\displaystyle (x_{2},y_{2})}

那么因为 A B + B C = A C {\displaystyle {\overrightarrow {AB}}+{\overrightarrow {BC}}={\overrightarrow {AC}}} ,得向量 A C {\displaystyle {\overrightarrow {AC}}} 的方向向量为 ( x 1 + x 2 , y 1 + y 2 ) {\displaystyle (x_{1}+x_{2},y_{1}+y_{2})}

因此, | A B | + | B C | = x 1 2 + y 1 2 + x 2 2 + y 2 2 {\displaystyle \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|={\sqrt {x_{1}^{2}+y_{1}^{2}}}+{\sqrt {x_{2}^{2}+y_{2}^{2}}}} | A C | = ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 {\displaystyle \left|{\overrightarrow {AC}}\right|={\sqrt {(x_{1}+x_{2})^{2}+(y_{1}+y_{2})^{2}}}}

所以, | A B | + | B C | | A C | = 2 x 1 2 x 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 + y 1 2 y 2 2 2 x 1 x 2 2 y 1 y 2 {\displaystyle \left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|-\left|{\overrightarrow {AC}}\right|=2{\sqrt {x_{1}^{2}x_{2}^{2}+x_{1}^{2}y_{2}^{2}+x_{2}^{2}y_{1}^{2}+y_{1}^{2}y_{2}^{2}}}-2x_{1}x_{2}-2y_{1}y_{2}}

( 2 x 1 2 x 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 + y 1 2 y 2 2 ) 2 = 4 x 1 2 x 2 2 + 4 x 1 2 y 2 2 + 4 x 2 2 y 1 2 + 4 y 1 2 y 2 2 {\displaystyle (2{\sqrt {x_{1}^{2}x_{2}^{2}+x_{1}^{2}y_{2}^{2}+x_{2}^{2}y_{1}^{2}+y_{1}^{2}y_{2}^{2}}})^{2}=4x_{1}^{2}x_{2}^{2}+4x_{1}^{2}y_{2}^{2}+4x_{2}^{2}y_{1}^{2}+4y_{1}^{2}y_{2}^{2}} ( 2 x 1 x 2 + 2 y 1 y 2 ) 2 = 4 x 1 2 x 2 2 + 8 x 1 x 2 y 1 y 2 + 4 y 1 2 y 2 2 {\displaystyle (2x_{1}x_{2}+2y_{1}y_{2})^{2}=4x_{1}^{2}x_{2}^{2}+8x_{1}x_{2}y_{1}y_{2}+4y_{1}^{2}y_{2}^{2}}

两者相减再配方,得到 ( 2 x 1 y 2 2 x 2 y 1 ) 2 {\displaystyle (2x_{1}y_{2}-2x_{2}y_{1})^{2}} ,该式实际上是 ( | A B | + | B C | ) 2 ( | A C | ) 2 {\displaystyle (\left|{\overrightarrow {AB}}\right|+\left|{\overrightarrow {BC}}\right|)^{2}-(\left|{\overrightarrow {AC}}\right|)^{2}} 的值。

当且仅当 x 1 y 2 = x 2 y 1 {\displaystyle x_{1}y_{2}=x_{2}y_{1}} 时,该式的值为0,而此时我们可以推出 x 1 = k x 2 , y 1 = k y 2 , k {\displaystyle x_{1}=kx_{2},y_{1}=ky_{2},k\in \Re } ,这说明 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} y 1 {\displaystyle y_{1}} y 2 {\displaystyle y_{2}} 都是平行的。而由于 x 1 {\displaystyle x_{1}} ,也就是向量 A B {\displaystyle {\overrightarrow {AB}}} 的终点和 x 2 {\displaystyle x_{2}} ,也就是向量 B C {\displaystyle {\overrightarrow {BC}}} 的起点是相同的,显然 A B {\displaystyle {\overrightarrow {AB}}} B C {\displaystyle {\overrightarrow {BC}}} 共线。这种情况在欧氏几何中是不可能的,只有在非欧几何的情况下才能成立。用 y 1 {\displaystyle y_{1}} y 2 {\displaystyle y_{2}} 平行也一样能够推出 A B {\displaystyle {\overrightarrow {AB}}} B C {\displaystyle {\overrightarrow {BC}}} 共线。

其他任何情况,也就是 x 1 y 2 x 2 y 1 {\displaystyle x_{1}y_{2}\neq x_{2}y_{1}} 时,该式取到不等号,适用于欧氏几何。

将向量形式的三角不等式两边减去相同的向量,同样能够推出三角形的两边之差小于第三边。

在实数中,此式依然成立: | a + b | | a | + | b | {\displaystyle \left|a+b\right|\leq \left|a\right|+\left|b\right|}

证明如下:

考虑到实数的平方必然是非负数,将两边平方,使它剩下一套绝对值符号:

对于 ( a < 0 , b > 0 ) ( b < 0 , a > 0 ) {\displaystyle (a<0,b>0)\lor (b<0,a>0)} (即a, b彼此异号), 2 a b < | 2 a b | {\displaystyle 2ab<\left|2ab\right|}

对于 ( a , b 0 ) ( a , b 0 ) {\displaystyle (a,b\leq 0)\lor (a,b\geq 0)} (即a, b彼此同号), 2 a b = | 2 a b | {\displaystyle 2ab=\left|2ab\right|}

像几何中的情况一样,该式的推论为: | | a | | b | | | a ± b | | a | + | b | {\displaystyle \left|\left|a\right|-\left|b\right|\right|\leq \left|a\pm b\right|\leq \left|a\right|+\left|b\right|}

在闵可夫斯基空间,三角不等式是反方向的:

这个不等式的物理例子可以在狭义相对论中的双生子佯谬找到。

相关:

网站公告: