新起点
伴随勒让德多项式
2021-01-22 10:04:15

伴随勒让德多项式(Associated Legendre polynomials,又译缔合勒让德多项式、连带勒让德多项式、关联勒让德多项式)是数学上对如下形式常微分方程解函数序列的称呼:

该方程是在球坐标系下求解拉普拉斯方程时得到的,在数学和理论物理学中有重要的意义。

因上述方程仅当 {\displaystyle \ell } m {\displaystyle m\,} 均为整数且满足 0 m {\displaystyle 0\leq m\leq \ell } 时,才在区间 上有非奇异解,所以通常把 {\displaystyle \ell } m {\displaystyle m\,} 均为整数时方程的解称为伴随勒让德多项式;把 {\displaystyle \ell } 和/或 m {\displaystyle m\,} 为一般实数或复数时方程的解称为广义勒让德函数(generalized Legendre functions)。

m = 0 {\displaystyle m\,=0} {\displaystyle \ell } 为整数时,方程的解即为一般的勒让德多项式。

注意当 m 为奇数时,连带勒让德多项式并不是多项式。

与勒让德多项式一样,连带勒让德多项式在区间 上也满足正交性。

这是因为,与勒让德方程一样,连带勒让德方程也是施图姆-刘维尔型的:

正交性的另一种表述如下,它与下面提到的球谐函数有关。

连带勒让德多项式可以由勒让德多项式求 m 次导得到:

等号右边的上标 (m) 表示求 m 次导。

连带勒让德函数(即 l, m 不一定要是整数)可以用高斯超几何函数表达为:

注意 μ 为正整数 m 时 1-μ 是伽玛函数的奇点,此时等号右边的式子应该理解为当 μ 趋于 m 时的极限。

显然连带勒让德方程在变换 m→-m 下保持不变,传统上习惯定义负数阶连带勒让德多项式为:

容易验证,这样定义的连带勒让德多项式能够使得上面的正交关系可以推广到 m 为负数的情况。

注意在个别文献(如上面的图,以及球谐函数一文)中会直接取

本文不采用这种定义。

球谐函数是球坐标下三维空间拉普拉斯方程的角度部分的解,构成一组完备的基组,有着重要的意义。

采用本文中定义的连带勒让德多项式的表达式,球谐函数可以表达为:

由连带勒让德多项式的正交关系可以直接得到球谐函数的正交关系:

式中 dΩ 是立体角元。

网站公告: